Homework 2

- 1. Let $a \in \mathbb{R}$. If x belongs to the neighborhood $N_{\epsilon}(a)$ for every $\epsilon > 0$, then show that x = a.
- 2. If $E \subseteq \mathbb{R}$ be a nonempty bounded set, and $I_E = [\inf E, \sup E]$, show that $E \subseteq I_E$. Moreover, if I is any other closed bounded interval containing E, then $I_E \subseteq I$.
- 3. Construct a bounded set of real numbers with exactly five limit points.
- 4. A set E is closed if and only if its complement is open.
- 5. Let $\{E_{\alpha}\}_{\alpha \in \Lambda}$ be a (finite or infinite) collection of sets E_{α} . Then

$$(\cup_{\alpha} E_{\alpha})^c = \cap_{\alpha} E_{\alpha}^c$$

- 6. (a) For any collection $\{O_{\alpha}\}_{\alpha \in \Lambda}$ of open sets, $\cup_{\alpha} O_{\alpha}$ is open.
 - (b) For any collection $\{F_{\alpha}\}_{\alpha \in \Lambda}$ of closed sets , $\cap_{\alpha} F_{\alpha}$ is closed.
 - (c) For any finite collection $\{O_k\}_{k=1}^n$ of open sets , $\cap_{k=1}^n O_k$ is open.
 - (d) For any finite collection $\{F_k\}_{k=1}^n$ of closed sets , $\bigcup_{k=1}^n F_k$ is closed.
- 7. Let E' denote the set of all limit points of the set E. Show that
 - (a) the set E' is closed.
 - (b) E and \overline{E} have the same limit points.
 - (c) Do E and E' always have the same limit points? Justify your answer.
- 8. Let $\{A_k\}_{k\in\mathbb{N}}$ be a sequence of subsets in \mathbb{R} .
 - (a) If $B_n = \bigcup_{k=1}^n A_k$, show that $\overline{B}_n = \bigcup_{k=1}^n \overline{A}_k$, for all $n \in \mathbb{N}$.
 - (b) If $B = \bigcup_{k \in \mathbb{N}} A_k$, show that $\bigcup_{k \in \mathbb{N}} \overline{A}_k \subseteq \overline{B}$. Moreover, show that this inclusion can be proper.
- 9. Is every point of every open set E in \mathbb{R} a limit point of E? Justify your answer.
- 10. Let E be a nonempty bounded set of real numbers. Show that $\inf E$ and $\sup E$ belong to \overline{E} .
- 11. Let E^0 denote the interior (set of all interior points) of a set E.
 - (a) Prove that E^0 is always open.
 - (b) Prove that E is open if and only if $E^0 = E$.
 - (c) Prove that E^0 is the largest open set contained in E.
 - (d) Prove that the complement of E^0 is the closure of the complement of E, i.e., $(E^0)^c = \overline{E^c}$.
 - (e) Do E and \overline{E} always have the same interiors?

MTH 303 Homework 2 (Continued)

- (f) Do E and E^0 always have the same closures?
- 12. Prove that every open set in \mathbb{R} can be written as the disjoint union of at most countable collection of open intervals.
- 13. Closed subsets of compact sets are compact.
- 14. If F is closed and K is compact, then $F \cap K$ is compact.
- 15. Let $K = \{\frac{1}{n} : n \in \mathbb{N}\} \cup \{0\}$. Prove that K is compact (without using the Heine-Borel theorem).
- 16. Construct a compact set of real numbers whose limit points form a countable set.
- 17. Give three different examples of open covers of the interval (0, 1) which do not admit finite sub-covers.
- 18. If $\{K_n\}_{n\in\mathbb{N}}$ be a sequence of nonempty compact sets such that $K_{n+1} \subseteq K_n, \forall n \in N$, then show that $\bigcap_{n\in\mathbb{N}}K_n \neq \emptyset$.
- 19. Prove that
 - (a) The total length of the removed intervals in the construction of the Cantor set is 1.
 - (b) The Cantor set P does not contain any nonempty interval.
 - (c) The Cantor set is perfect.
 - (d) The Cantor set is uncountable.
- 20. Define a point $x \in \mathbb{R}$ to be a condensation point of a set $E \subseteq \mathbb{R}$ if every neighborhood of x contains uncountably many points of E.

Suppose $E \subseteq \mathbb{R}$ be an uncountable set, and let P be the set of all condensation points of E. Prove that P is perfect and that at most countably many points of E are not in P.

- 21. Prove that every closed set in \mathbb{R} is the union of a (possibly empty) perfect set and a set which is at most countable.
- 22. Every countable closed set in \mathbb{R} has isolated points. **Isolated point**: If $x \in E \subseteq \mathbb{R}$ and x is not a limit point of E, then x is called an isolated point of E.
- 23. Is there a nonempty perfect set in \mathbb{R} , which contains no rational number?